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1. INTRODUCTION

The electrothermal-chemical (ETC) gun, generically shown in Figure 1, is a propulsion concept which

utilizes a low mass, high energy plasma to initiate and, potentially augment and control the

combustion/vaporization of the propellant (working fluid) during the ballistic cycle. The propulsion

system has five major components: (1) the power supply; (2) the pulse-forming network (PFN) and

switches; (3) the plasma generator, (4) the combustion chamber, and (5) the tube and projectile. Control

of the interior ballistic (IB) process in terms of gas generation rate is theoretically accomplished by

tailoring the delivery of electrical energy to the propellant in the combustion chamber in a manner to

control combustion or vaporization of the propellant. Although the propellant may be liquid, gelled, or

solid, the function of the plasma remains that of the initiator and controller.

In some design implementations, the piasma is formed in a plasma capillary (see Figure 1). In the

rear capillary design, the dominant plasma properties believed to be important in the propellant combustion

process are the energy, mass and velocity of the plasma entering the combustion chamber. These

properties are shaped by the delivery of current from the PFN. Although the quantitative effects of

variation of plasma mass, energy, and velocity on the combustion process are not known, it is of interest

to determine the coupled effects of variation in the PFN and plasma cartridge geometry on the state of the

plasma. These parametric relationships serve as a basis for design considerations.

In addition, it has been observed experimentally that unprogrammed changes in the coupled

PFN-plasma subsystem occur which may affect the IB cycle. Shown in Figure 2 are power histories from

ten 30-mn repeatability shots using a rear plasma capillary, and shown in Figure 3 are the electrical

energy histories (integral of the power history) for the same series (FMC Corporation, Contract
#DAAA21-88-C-0271). The repeatability series forms a sequence of shots in which the initial conditions

are carefully controlled and all inputs are intended to be identical. However, the electrical energy variation

in the plasma cartridge is seen to be 7%. For this series, the difference in maximum pressure is 13.3%

and the muzzle velocity variation is 2.5%. The results are considered encouraging, although they do not

meet the criteria of 0.5% standard deviation in muzzle velocity required for decision point 1 under the

Electrical Enhancement Factor (EEF) ETC follow-on contracts (1991).

Under the current Army ETC cartridge development contracts (Oberle, private communication), the

contractor is responsible for meeting the decision point criteria with a cartridge design consisting of the

1
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plasma integrated into a propellan The contractor is not responsible for the development and reliability

of the power supply. Based on experimental data such as that shown in Figures 2 and 3, it might te

expected that variation may occur in the PFN itself which may affect the plasma propertie., subsequently

affecting the interior ballistic cycle. If variability in the IB cycle can be directly related to variability in

the PFN, then ballistic results in terms of pressures and muzzle velocity will need to be viewed in the

context of the delivery of electrical energy.

Thus, the work presented in this paper has two objectives: (1) determine the sensitivity of the plasma

properties to variations in the PFN; and (2) parametrically develop guidelines for modifications of plasma

properties by changes in the PFN and geometry of the piasma cartridge. To accomplich the objectives,

a coupled PFN-plasma cartridge model has been developed. The model is applied to and validated against

the experimental fixture at the Ballistic Research Laboratory (BRL). Parametric variations of input to the

PFN and geometry of the plasma cartridge are examined for the effect on the plasma properties.

2. PFN MODEL DESCRIPTION

The PFN model was developed by simulating the five-stage, 130-kJ PFN network in the ETC facility

at BRL. The network consists primarily of five icries of high energy capacitors, ignitrons, inductors, and

resistors. Each module is triggered independently. The modules are connected directly to the anode and

the cathode of the plasma capillary or to a fixed-metallic resistance, as shown in Figure 4.

In this circuit, the capacitors serve as energy storage and are clamped by the diodes to protect the

capacitors from voltage reversals. The ignitrons are used as timed closing switches. The timed firing of

the ignitrons and the characteristics of the resistor, induction, and capacitor (RIC) circuit change the shape

and the duration of the current pulse. When the switch closes, the network is a voltage-fed network, and

it becomes a current-fed network when the diode starts to conduct. The initially stored energy is equal

to one-half of the total amount of capacitances in the circuit multiplied by the square of initial voltage

charges across the capacitors,

5
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The resultant current pulse through the load depends on the initial voltage charge across each

capacitor, the values of capacitance, inductance, load resistance, and the closing times of the switches.

To simplify the circuit analysis, it is assumed that there is no thermal effect on the network components.

The capacitor is treated as a pure capacitor in series with a small resistor and an inductor, the inductor

as in series with a small resistor, and the diode as in series with a resistor. The equations which are used

in this PFN model are divided into two cases: (1) the circuit as a voltage fed-network; and (2) the circuit

as a current-fed network.

Case 1: The circuit is a voltage fed network with each module treated as a simple loop RLC circuit.

The analysis of the circuit is based on the following equations. According to Kirchoff's law,

C* ri I, oa (2)

where V is voltage and the subscripts refer to the capacitance of the capacitor (ci), sum of the inductances

(i), and sum of resistances (ri) in ith module, and the current of each module is

,,Ii - ., (3)

Voltage across the capacitor can also be defined as

Q (4)

where Q is the charge of the capacitor. The current through the capacitor is given by

lei - i = dQ = C dVe (5)
d' d

and the voltage across the inductance is defined by

7



Vi = L d/ . (6)dt

The voltage across the load is given by

Sv1.d - Rla 11. - Ra F. 1i (7)

Substituting Equations 4, 5, 6, and 7 into Equations 2 and 3, and rearranging gives

dVe_.. 1_t (8)

dt C

and

5

dl, Vi + R!I + R Eljut
at L (9)

These two differential equations form the primary equations used in the PFN model.

Case 2: Current fed network, the circuit after the diode starts to conduct. It is assumed that the small

current through the capacitor can be neglected, and the equations in this case are

Vd + V, + VY + v,1, =0 (10)

and
S

d Vd + RI + R,(1 E1)

dt Li

where Vd is forward diode voltage.

8



The plasma capillary model is a one-dimensional, steady-state, isothermal model which solves the

basic magnetohydrodynamic conservation equations for the nonideal plasma, calculates the plasma

conductivity, its ionization state, and approximate pertinent equations of state (Powell and Zielinski).

Since the plasma model has a free boundary on the combustion chamber side, a "choked flow" assumption

is utilized at the nozzle. That is, it is assumed that mass exits the nozzle at the local sound speed of the

plasma.

Consequently, the linked PFN-plasma model is a feedback system where the output conductivity of

plasma is used to calculate the input load resistance of the PFN. The output of the PFN model, which

is the current across the capillary, is the input of plasma model.

3. MODEL VALIDATION

A comparison of the diagnostic data and model current output is carried out for both fixed-metallic

load and plasma load. These experimental data were taken in September 1990 at BRL with the PFN

shown in Figure 4 (Katulka, Burden, and Zielinski 1990). The rate of change of current through the load

was measured by using a Rogowski probe. Due to the lack of information about the resistances and

inductances of capacitors, they are assumed to be zero in the calculations.

With constant load (Table 1), the percent differences between the peak currents and the predicted

results for the two eXperimental sets examined are 2% and 4%, considered to be reasonable agreement.

Table I. Comparison With Experiment for Constant Load

F Set #1 Set #2

Initial voltage charge (KV) 1.0/C1-5 2.0/CI,3.0/C2-5
Total initial energy (kJ) 1.4 11.3
Switch closing times (As) 0,180,270,497,641 0,180,270,497,641
Load resistance (mfQ) 35 35
Experimental max. current (KA) 9.9 32.1
Model max. current (KA) 10.1 30.8
Difference +2% -4%

9



In the case of a plasma capillary load, the coupled PFN-plasma model is run under the assumption

of choked flow. The differences of peak currents for the two experimental data sets examined are 3% and

9% as shown in Table 2. The reason for the larger discrepancy between the model and data in Set 2 in

Table 2 is not known.

Table 2. Comparison With Experiment for Plasma Load

Set #3 Set #4

Initial voltage charge (KV) 2.0/C1,4.0/C2-5 2.0/C1,3.2/C2-5
Total initial energy (kJ) 19.5 12.8
Switch closing times (.ts) 0,180,270,497,641 0,280,370,597,741
Capillary length (mm) 52.75 52.75
Capillary diameter (mm) 12.3 9.625
Experimental max. current (KA) 46.6 25.5
Model max. current (KA) 48.2 27.7
Difference +3% +9%

The current vs. time curves of the diagnosdc record and the corresponding simulation fir a constant

load and a plasma load show good agreement as shown in Figures 5 and 6.

4. PARAMETRIC VARIATION

In order to evaluate the coupling between the PFN and the plasma capillary and the corresponding

effect on plasma properties, the data set used for the validation in Section 3 was chosen as a baseline and

parametncally vaned. The data in Table 2, Set #3, with 19.5-kJ initial energy and with a capillary

52.75 mm long and 12.30 mm diameter were varied with a percentage change in (1) the initial voltage

charge; (2) the capillary diameter; (3) the capillary length; and (4) the combination of changes in the

diameter and the length of the plasma capillary in opposite directions. Thus, a change of +10% indicates

an increase of 10% over the baseline in one initial condition with all other conditions the same as the

baseline. A change of +10% in (4) indicates that the length increased by +10% and the diameter

decreased by -10% over the baseline base. Corresponding changes in plasma properties examined were:

(1) the load resistance at maximum current; (2) the maximum plasma current; (3) the total dissipated

energy of the capillary; (4) the total plasma mass exit; and (5) the pressure at the end of capillary. The

results are shown in Figures 7-11.

10
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As indicated in Figures 7-11, the change in the initial voltage charge of the power supply is the most

important factor, influencing all the important properties of plasma. The current across the load increases

nearly linearly with the increase of the initial voltage charge across the capacitors (Figure 8). Voltage

increases cause an increase in plasma temperature and plasma conductivity (Figure 7), consequently

causing an increase in plasma current (Figure 8) and in the dissipated energy (Figure 9). Total plasma

mass through the nozzle (Figure 10), and the breech pressure (Figure 11) also increase because the

ablation rate increases with the temperature.

In the case of changing the capillary radius, the analysis is more complicated. The simulation output

shows that the plasma properties are more sensitive to the changes in the radius than changes in the length.

When the radius decreases 30%, the resistance of plasma at maximum current increases about 70%

(Figure 7) and the breech pressure (Figure 11) increases 100%. Meanwhile, dissipated energy (Figure 9)

and total plasma mass exit from the capillary (Figure 10) show insignificant change. However, when the

capillary length increases, the plasma resistance linearly increases (Figure 7), with a resulting decrease in

maximum current (Figure 8) across the capillary. The total dissipated energy (Figure 9) and the breech

pressure (Figure 11) change only slightly from baseline in this case. However, the total mass exit

(Figure 10) shows an increase of approximately 15% when the length increases 30%.

The worst case of changes in the resistance and the pressure should occur for the case when the radius

increases and the length decreases or vice versa. If the radius decreases 20% and the length increases

20%, the resistance (Figure 7) increases about 80% and the pressure (Figure 11) increases about 60%.

However, in this case the total mass exit (Figure 10) and total energy show only a slight change.

5. CONCLUSIONS

A coupled PFN-plasma capillary model has been developed for the experimental fixture at BRL. The

model agrees well with baseline experimental data both for a fixed load and plasma load. Parametric

variation of various input parameters suggest that, compared to the baseline:

(I) total plasma dissipated energy and mass are most sensitive to changes in initial voltage;

(2) tctal plasma dissipated energy and mass are not strongly affected by changes in the plasma

capillary geometries considered;

12



(3) changes of 5% variation (on the order observed in the experimental firings) in the initial

voltage yield changes of 9% in total plasma dissipated energy and 7% in total plasma mass at the

exit; and

(4) pressure at the nozzle is strongly affected by both initial voltage and capillary radius.

The effect on gun performance (in terms of maximum pressure and muzzle velocity) of the coupling of

variations in plasma mass, energy and momentum with an energetic propellant was not investigated and

remains a subject for future investigation.

13
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